Shortcuts
Bitte warten Sie, bis die Seite geladen ist.
 
PageMenu- Hauptmenü-
Page content

Katalogdatenanzeige

Coabsorbent and Thermal Recovery Compression Heat Pumping Technologies

Coabsorbent and Thermal Recovery Compression Heat Pumping Technologies
Kataloginformation
Feldname Details
Vorliegende Sprache eng
Hinweise auf parallele Ausgaben 423500295 Druckausg.: ‡Staicovici, Mihail-Dan: Coabsorbent and thermal recovery compression heat pumping technologies
ISBN 978-3-642-54683-9
Name Staicovici, Mihail-Dan
T I T E L Coabsorbent and Thermal Recovery Compression Heat Pumping Technologies
Verlagsort Berlin, Heidelberg
Verlag Springer Berlin Heidelberg
Erscheinungsjahr 2014
2014
Umfang Online-Ressource (XXVI, 501 p. 268 illus., 84 illus. in color, online resource)
Reihe Heat and Mass Transfer
Notiz / Fußnoten Description based upon print version of record
Weiterer Inhalt Preface; Contents; 1 Introduction; 1.1 First and Second Principles of Thermodynamics; 1.1.1 Ideal (Perfect) Gas Laws; 1.1.2 Ideal Gas State Equation; 1.1.3 Mixtures; 1.1.3.1 Mass Fraction; 1.1.3.2 Molar Fraction; 1.1.4 Specific Heat; 1.1.5 First Principle of Thermodynamics (Robert Mayer 1842); 1.1.5.1 Heat-Mechanical Work Quantitative Equivalence; 1.1.5.2 Equation of the First Principle of Thermodynamics; 1.1.5.3 Enthalpy; 1.1.5.4 Cycles. First Principle Application; 1.1.6 Second Principle of Thermodynamics (Sadi Carnot 1824). 1.1.6.1 Reversible and Irreversible Transformations. Heat and Sink Sources. Thermal Efficiency and Effectiveness. Wordings of the Second Principle of Thermodynamics1.1.6.2 The Carnot Cycle; 1.1.6.3 Clausius Integral. Entropy. Entropy Variation of Irreversible Transformations. General Equation of Thermodynamics; 1.2 Exergy and Anergy. Heat Exergy. Exergy of Closed Systems. Exergy of Open Systems. Relationship Between Exergy Dissipation and Entropy Creation. Non-equilibrium Linear Phenomenological Connection Between Generalized Forces and Currents; 1.2.1 Heat Exergy. 1.2.2 Exergy of Closed Systems1.2.3 Exergy of Open Systems. Relationship Between Exergy Dissipation and Entropy Creation; 1.2.3.1 Energy Balance; 1.2.3.2 Exergy Computation; Exergy Dissipation Speed of Mass Currents; Exergy Dissipation Speed of Heat Currents; Work Produced Current as Exergy Current; 1.2.3.3 Total Exergy Dissipation Speed. Relationship Between Exergy Dissipation and Entropy Creation. Exergy Efficiency; 1.2.4 Non-equilibrium Linear Phenomenological Connection Between Generalized Forces and Currents; 1.3 Equilibrium of Thermodynamic Systems and Phase Transformations. 1.3.1 Thermodynamic Stability and Equilibrium1.3.2 Equilibrium Conditions of a Homogeneous Isolated System. TPT Equilibrium Point and Static Equilibrium; 1.3.3 Phase Equilibrium Conditions of Monocomponent and Binary Systems. TPT Ideal Point and Dynamic Equilibrium; 1.3.4 Phase Transformations. Gibbs Rule of Phases; 1.3.5 Clapeyron-Clausius Equation; 1.4 Absorption Heat Pumping Selected Topic; 1.4.1 Absorption Cycle Introduction; 1.4.2 Basic Absorption Cycles; 1.4.3 Ideal Cycles; 1.4.3.1 Effectiveness of Direct and Reverse Carnot Cycles. 1.4.3.2 Effectiveness of Carnot Absorption Cooling Cycle1.4.3.3 Effectiveness of Carnot Absorption Heating (Heat Transformer) Cycle; 1.4.4 Selected Topic of Solutions Thermodynamics; 1.4.5 Condensation and Evaporation of Binary Mixtures; 1.4.6 Dissolution (Mixing) Heat of Binary Mixtures; 1.4.7 Absorption Cycle Charts; 1.4.7.1 log (p) − 1T Chart; 1.4.7.2 Dühring Chart; 1.4.7.3 Enthalpy-Concentration Chart; 1.4.8 Working Fluid-Absorbent Mixtures Model; 1.4.8.1 Equation of State; 1.4.8.2 Equation of State of Components; References. 2 Mass and Heat Exchange Analysis of the Absorption Processes: The Divided Device Method
Titelhinweis Druckausg.: ‡Staicovici, Mihail-Dan: Coabsorbent and thermal recovery compression heat pumping technologies
ISBN ISBN 978-3-642-54684-6
Klassifikation TGMB
SCI065000
621.4021
621.563
TJ265
QC319.8-338.5
ZP 3740
Kurzbeschreibung This book introduces two of the most exciting heat pumping technologies, the coabsorbent and the thermal recovery (mechanical vapor) compression, characterized by a high potential in primary energy savings and environmental protection. New cycles with potential applications of nontruncated, truncated, hybrid truncated, and multi-effect coabsorbent types are introduced in this work. Thermal-to-work recovery compression (TWRC) is the first of two particular methods explored here, including how superheat is converted into work, which diminishes the compressor work input. In the second method, thermal-to-thermal recovery compression (TTRC), the superheat is converted into useful cooling and/or heating, and added to the cycle output effect via the coabsorbent technology. These and other methods of discharge gas superheat recovery are analyzed for single-, two-, three-, and multi-stage compression cooling and heating, ammonia and ammonia-water cycles, and the effectiveness results are given. The author presents absorption-related topics, including the divided-device method for mass and heat transfer analysis, and truncation as a unique method for a better source-task match. Along with advanced gax recovery, the first and second principles of COP and exergy calculation, the ideal point approaching (i.p.a.) effect and the two-point theory of mass and heat transfer, the book also addresses the new wording of the Laplace equation, the Marangoni effect true explanation, and the new mass and heat exchangers based on this effect. The work goes on to explore coabsorbent separate and combined cooling, heating, and power (CHP) production and advanced water-lithium bromide cycle air-conditioning, as well as analyzing high-efficiency ammonia-water heat-driven heating and industrial low-temperature cooling, in detail. Readers will learn how coabsorbent technology is based on classic absorption, but is more general. It is capable of offering effective solutions for all cooling and heating applications (industry, agriculture, district, household, etc.), provided that two supplying heat-sink sources with temperatures outdistanced by a minimum of 12-15ºC are available. This book has clear and concise presentation and illustrates the theory and applications with diagrams, tables, and flowcharts.
1. Schlagwortkette Kompressionswärmepumpe
Kompressionskältemaschine
Absorptionswärmepumpe
Kombinationsverfahren
Thermodynamik
Wärmeübertragung
Betriebsverhalten
SWB-Titel-Idn 405482663
Signatur Springer E-Book
Bemerkungen Elektronischer Volltext - Campuslizenz
Elektronische Adresse $uhttp://dx.doi.org/10.1007/978-3-642-54684-6
Internetseite / Link Volltext
Siehe auch Volltext
Siehe auch Cover
Kataloginformation500187502 Datensatzanfang . Kataloginformation500187502 Seitenanfang .
Vollanzeige Katalogdaten 

Auf diesem Bildschirm erhalten Sie Katalog- und Exemplarinformationen zum ausgewählten Titel.

Im Bereich Kataloginformation werden die bibliographischen Details angezeigt. Per Klick auf Hyperlink-Begriffe wie Schlagwörter, Autoren, Reihen, Körperschaften und Klassifikationen können Sie sich weitere Titel des gewählten Begriffes anzeigen lassen.

Der Bereich Exemplarinformationen enthält zum einen Angaben über den Standort und die Verfügbarkeit der Exemplare. Zum anderen haben Sie die Möglichkeit, ausgeliehene Exemplare vorzumerken oder Exemplare aus dem Magazin zu bestellen.
Schnellsuche